
Reliability Modeling of Structured Systems:

Exploring Symmetry in State-Space Generation �

Arun K. Somani

Department of Electrical Engineering, and

Department of Computer Science and Engineering

University of Washington, Box 352500

Seattle, WA 98195-2500

Tele: (206) 685-1602

email: somani@ee.washington.edu

Abstract

A large number of systems are implemented using regular interconnected topologies.
Markov analysis of such systems results in large state spaces. We explore symmetry, in par-
ticular rotational and permutational, of such systems to achieve a signi�cant reduction in
the size of the state space required to analyze them. The resulting much smaller state spaces
allow analyses of very large systems. We de�ne equivalent classes of states and develop an
algorithm to generate small state spaces and the corresponding Markov chain for systems
with permutation symmetries. The state space generation process is also simpli�ed. We
demonstrate our technique using several examples. Our technique is very useful in the exact
analysis of large systems.

�This research was supported in part by NASA under NAS1-19480 while the author was on sabbatical at the

Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA

23681.

i

1 Introduction

A large number of systems are implemented using a regular interconnected topology. Regu-
larity is de�ned in terms of connectivity of a node, i.e., degree of a node and connections to
its neighbors. A structure is regular with respect to a function if the nodes of the structure
are renumbered using that function and there exists a link renumbering such that the re-
sulting structure is isomorphic to the original topology. In such a case, the relative position
of a node is of no importance. Any of the nodes can be numbered as node 1. For example,
in a two-dimensional torus interconnected structure, as shown in Figure 1, each node has
a degree of four. Each node (i; j) is connected to nodes i � 1 and i + 1 in ith dimension
and nodes j � 1 and j + 1 in the jth dimension. Any of the nodes can be numbered as
node (0,0). The structure can be redrawn and is isomorphic to the original structure. There
are several examples of regular structures. In the analysis of such systems one need not be
concerned with the individual con�guration of the system but all isomorphic con�gurations
can be treated as a single class. Another example of a structured system is an n-dimensional
binary cube or in general any k-ary n-cube. In some of the structures, we may have regular-
ity in only certain dimensions. For example, in a two dimensional mesh if one dimension is
connected as a ring but the second dimension is only a linear array then regularity is present
in the dimension with the ring structure only.

Figure 1: A 5 � 5 torus network.

Another variation in these structures could be that there is a control node connected to
all nodes of the structures belonging to a particular dimension or dimensions. The control
node a�ects the operations of all the nodes it is connected to in an identical fashion. An
example of such a class of regular structures is processors/memories or processors/processors
connected using a crossbar switch. One processor or one memory is connected to each
column or row. We use the terminology processor/memory just to distinguish the column
and row connections in the crossbar system. Without the loss of generality, we assume that
processors are connected to column connections in the crossbar and memories are connected

1

to row connections. The model of crossbar we use here is that a cross point connects a
column processor to a row memory. If a particular processor fails then all the cross points
connecting it to di�erent memories are no more useful for the system operation. Similarly, if
a memory fails, the same holds for the cross points connecting that memory to any processor.
In the reverse direction, if all cross points in a row fails then the processor cannot perform
any meaningful operation. The same relationship holds for a memory and the corresponding
cross points in that column.

1.1 Motivation

In the analysis of a system for reliability or performance, our goal is to identify situations or
probabilities of occurrence of such situations when a desired con�guration is not available due
to failures or other reasons. There are performance implication for each system con�guration.
For example, consider a scenario where we are interested in knowing, when P' out of P
processors and Q' out of Q memories are not available if processor, memories, or cross
points can fail individually. In the analysis, we need to consider all scenarios when the
system fails to deliver the required performance. Since the components can fail in any order
and at any location, all combinations of failure must be considered. In a P processors, Q
memories, and P*Q cross points system, there are P+Q+P*Q components. A large number
of cross point failures can be tolerated before the system really fails. Moreover, with each
failure, we may like to model some �ne behavior relevant at the time of fault occurrence
and system recon�guration. So a Markov chain may be generated where each state in the
Markov chain corresponds to one state of the system. This chain can be analyzed to compute
the metrics of interest. Analysis of such systems, combinatorially or otherwise, results in a
large number of system states which must be considered. In particular, if we assume a two
state model for each component, i.e., processor, memory, or cross point, we may have up to
2(P+Q+P�Q) states and a large number of them are operational states. It can be easily seen
that the analysis becomes tedious even for a small number of components.

To simplify the analysis, most analysts assume that either cross points failure may not
be very critical as there are large numbers of them, and therefore, only consider processor
and memory (end point) failure. Another approximation in analysis is made by considering
the three subsystems independently. The probabilities of required numbers of processors,
memories, and cross points being available are calculated separately and approximate results
are synthesized. But, when �ner behavior is to be included in the model, such as a fault
and error handling model [16] for cross points, then we need to perform the analysis using
Markov methods and generate a Markov chain, keeping track of all possible states. A
moderate 4� 4 systems with eight end points has 224 states. Any larger system than that
is almost impossible to analyze. Such di�culties are demonstrated using the example of
analysis of a fault tolerant system described in the next section.

Regular structures, however, have symmetry which must be exploited for state space
generation. With the symmetry, the number of states can be signi�cantly reduced while �ne
behavior can be modeled at each transition if so desired. We develop techniques to generate
e�cient state space exploring of such symmetries and demonstrate the performance and
e�ectiveness of our approach.

To motivate the problem further, we �rst give an example of a fault tolerant system
in Section 2 and show how the number of states can be reduced. Then we develop a

2

PROC 1 PROC 2 PROC 3

MEM 1

MEM 2

MEM 2
V-H V-H V-H

V-H V-H V-H

V-H V-H V-H

H-V H-V H-V

H-V H-V H-V

H-VH-VH-V

Figure 2: Meshkin Architecture

general technique to generate a smaller state space exploiting the symmetry of the structure.
In particular, we look at n-dimensional structures and exploit permutational symmetries.
Similar techniques can be applied to rotational or any other well-de�ned symmetry. Basic
classes of permutations of such structures are de�ned and we develop an algorithm to reach
the basic class from a given arbitrary permutation in Section 4.2. We show the possible
state space reduction using several examples and list some basic permutations for 3� 3, and
2 � 2 � 2 torus-connected systems in Section 4.3. Then we present the results for a larger
(4� 4) system. Finally our conclusions are presented in Section 5.

2 An Example Fault Tolerant System

Component redundancy is used to achieve high reliability and fault tolerance [7, 8] to tolerate
many failures before the system services are not available. Since near coincidence failure
may make the system fail, it is necessary to model the �ne behavior of the system using
a Markov chain. Naive modeling of such systems results in a state space that could be
extremely large. For example, Figure 2 shows a fault tolerant system using a mesh-based
voter. It has a triple modular redundancy. Three processor modules and three memory
modules are interconnected using a mesh (cross bar equivalent) interconnection. These
interconnection units are called Bus Interface Units (BIUs). The operation is as follows:

1. For each data request, all processors generate a request synchronously, using their
respective buses. One V-H unit on each horizontal bus transfers the request to that
horizontal bus. This unit is called a master unit. Other V-H units (called checker
units) on that bus compare the request of their respective vertical and horizontal bus
and determine if the request being transmitted on the horizontal bus is correct. If any
inconsistency is detected, the mesh enters a recon�guration mode using mesh control
signals. Otherwise the memory is allowed to generate the response.

2. When memories generate responses, one H-V unit on each vertical bus transfers that
response to that vertical bus and to the processor. This unit is the master unit on the
vertical bus. The other V-H units (checker units) on each vertical bus compare their

3

M1

M2

M3

P1

P3

P2

H3

H2

H1V1

V2

V3

V1

M1

M2

M3

P1

P2

P3

H1

H2

H3

V2

V3

Figure 3: A Graph Model for Meshkin

respective responses with the response being transmitted by the master unit. Again if
an inconsistency is found, the mesh enters a recon�guration mode.

3. As long as su�cient units are available on each bus (to be determined by the actual
implementation and fault tolerance requirement) the bus operation can continue.

4. Any unit can be a master unit as long as its source of data is from an operational
processor or memory. A failed processor/memory results in e�ective failure of the
those BIUs to which it is connected as source of data. Thus, a processor failure
e�ectively fails the corresponding V-H unit. Similarly, a memory failure e�ectively
fails the corresponding H-V units.

The V-H and H-V unit at a location in mesh may be two independent units or the
same unit (operationally). In the latter case, failure of one implies failure of the other.
If a processor has failed it does not matter if the H-V units connected to its bus are
operational or not. Similarly, if a memory has failed, it does not matter if the V-H
units connected to its bus are operational or not.

The system has the following implied failures:

(a) Failure of a processor (memory) implies failures of all V-H (H-V) units connected
to it.

(b) Failures of all V-H (H-V) units connected to a horizontal (vertical) bus imply
failure of the corresponding memory (processor).

The communication mechanisms in the Meshkin architecture can be speci�ed using a
graph model as shown in Figure 3. A path in the graph is up if every component on that
path is up. If a component fails, then all paths which use that component fail. The success
and failure criteria are speci�ed using the availability of a set of paths.

Due to the richness of the interconnection, this architecture can tolerate a large number
of BIU failures and still may be operational. Suppose the success criteria is that as long
as one processor can communicate with one memory and vice-versa, the system remains
operational. In one actual implementation of this architecture [8], BIUs have their own fault
detection and isolation circuitry to allow a single channel operation. Thus in one speci�c
scenario, out of 3 + 9 + 9 + 3 component system, as long as some particular four of them

4

U U U

U U U

U U U

U U U

D U U

U U U

U U U

D D U

U U U U U U

D U U

D U U U D U

D U U

U U U

U U U

D D D

U U U

D D U

D U U

U U U

D D U

U U D

U U U

D U U

D U U

D U U U D U

D U U

D U U D U U

U D U

U U D

D D D

D U U

U U U

D D U

D D U

U U U

D D U

D U D

U U U

D D U

D U U

D U U

D D U

D U U

U D U

D D U

D U U

U U D

D D U

U U D

U U D

D D D

D D U

U U U

D D D

D U U

D U U

D D D

D U U

U D U

D D U

D D U

D U U

D D U

D D U

U U D

D D U

D U D

D U U

D D U

D U D

U D U

D D D

D D D

U U U

D D D

D U U

D D U

D D D

D D U

U U D

D D U

D D U

D D U

D D U

D D U

D U D

D D U

D U D

U D D

D D D

D D D

D U U

D D D

D D U

D D U

D D D

D D U

D U D

D D D

D D D

D D U

D D D

D D D

D D D

36 States in 3 x 3 Mesh

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

Figure 4: 36 States of Mesh to Model Meshkin

(one processor, one memory and the two BIU units connecting them) are operational, the
system is operational. A naive model generates more than a million states. Even a smart
fault tree model of this system will still generate more than 25,000 states for this system.

Since the model is so symmetric, after considering implied failure, we may simply track
the status all the BIUs in the mesh. As long as there is one V-H unit along with its
corresponding H-V unit operational, the system is operational. To demonstrate this in the
paper and to keep things manageable, we make a further simpli�cation to keep the state
space even smaller. We assume that a V-H and the corresponding H-V units are tightly
coupled for failures and failure of one implies failure of the other. This reduces the number
of combinations which we need to track. Even this simpli�cation generated more than
10,000 states using a tool like HARP [16] where input was speci�ed using a fault tree after
modifying the fault tree. We encourage readers to try their favorite tool and report to us if
they get any signi�cant reduction in number of states using the input language of the tool
without making any simplifying assumptions.

Two permutation of mesh states are equivalent if the net e�ect is the same. For example,
in a fully operational system, failures of individual processors are indistinguishable. The
same applies for memories as well as for the �rst BIU failure. However, this cannot be
modeled as redundancy in the fault tree as individual BIUs a�ect the processors and memory
di�erently. For example, failure of two BIUs in a column and the memory element in the row
corresponding to the operation BIU essentially makes the processor in that column unusable
but another memory element failure does not create the same situation. Thus all situations

5

U U U

U U U

U U U
0

U U U

D D D

U U U
3 U U U

D U U

U U U

1 D U U

D U U

D U U

8

D D D

D D D

U U U
25 11

D D D

D U U

D U U
19

D D D

D U U

U U U

U U U

D D U

U U U

U D U

D U U

U U U U U U

D U U

D U U

D D U

D U U

D U U

D D U

D D U

D D U

9*B

3*P3*M

2*M 3*P

6*B

1*P1*M

4*B2*B 2*B 2*P2*M 2*P
3*M

6*B

All arcs not shown

4 3 14 282

All arcs nor marked

Figure 5: Markov Chain for Meshkin

U D U

D U U

U U U

U D U

D D U

U U U

U D U

D U D

D D U

D U U

U U U

U D D

D U U

U U U

U D U

D U U

D U U

U D U

D U U

U D U

U D U

D U U

U U D

U D U

D D D

U U U

D D D

D U U

U U U

U D U

D U U

D D D

D D U

D U U

D U U

U D U

D D U

U D U

U D D

D U D

U U D

6 7 6 7 9 9 10 11 11 20 14 14 23

U U U

B B B B B BB M M M P P P

Figure 6: State Expansion in Markov Chain

with failures of two BIUs and one memory element are not identical. The system state is
de�ned by the exact fault locations. There could be situations where the system states are
equivalent. If such equivalences are accounted for one can then model the system using 36
states, as shown in Figure 4.

In this �gure, a U means the corresponding BIU is up along with its source of data. A
D means the BIU or its source is down. Any state is equivalent to one of the permutation
of one of the states. A permutation here can be obtained by exchanging rows or columns or
both. Thus a state with three row vectors (U U D; U U D; U U U) is equivalent to (D U U;
D U U; U U U) and so on. Note that the performance of the system in the two states that
are equivalent is identical and, therefore, the reward associated with these states is identical
in performability modeling.

A markov chain can then be generated, as shown in Figure 5. We do not show all the
arcs or label all of them, but it is easy to see that the model reects the exact behavior of
the system and is su�cient for further analysis. For example, in Figure 6 we expand state
4 by injecting one fault at a time. It can sustain 7 BIU failures, three processor failures,
and 3 memory element failures. Thus there are 13 possible next states. However, several
of these states are equivalent, as shown in Figure 6. Note that, in the process, we also get
a transition rate from one state to another state. For example, in Figure 6, transition rate
from state 4 to state 6, 7, and 9 is 2B each and to state 10 it is B. Similarly to state 14,
and 23, the transition rates are 2P and P, respectively. In case any of these components are

6

repairable, the reverse transition can also be generated from any of the next states to state 4
with the appropriate rate. This system may otherwise require up to 215 states. A signi�cant
reduction (36 instead of 215, several orders of magnitude) can be achieved. Sometimes, we
may need to keep track of some other states and that depends on what particular metric is
of importance in the analysis.

3 How to Get the Reduction

In order to get the reduction there are several helpful hints a system analyst can provide. In
the example above, the interaction among processors, memories, busses, and bus interface
modules is very regular.

For an n-dimensional structure, to explore permutational and/or rotational symmetry,
we need to specify the following parameters for the e�cient state space generation:

1. The structure of system interconnection using a multi-dimensional structure format
specifying connectivity of the system and permutation and rotational symmetry.

2. End connection (control) nodes a�ecting the nodes in one or more dimensions specifying
depend or a�ect operators.

3. Group vs individual a�ects: How a component or a group of components behaves
together.

4. Distinguishable and non-distinguishable component failures and reward structure in
each case.

5. Possible structure of a state tuple (what components need be speci�cally tracked or
need not be tracked in a state tuple).

The nodes whose individual failures need not be distinguished can be speci�ed as a
group as is the case in modeling using fault trees. Language constructs such as depends on
or a�ects can be used to specify the implied failures. The structure of the system can be
speci�ed using a multidimensional structure. The permutation symmetries can be speci�ed
for each dimension. The exact nature of this speci�cation is still being researched and is
beyond the scope of this paper. Our ultimate goal is to develop a language to be able to
specify such behaviors as completely as possible and is part of our future research. We
restrict ourselves to simply demonstrate that such a speci�cation can and does lead to the
signi�cant reduction in the size of the state space.

The size of the state space also depends on what information needs to be tracked and what
can be hidden. For example, in the Meshkin system the state space representation includes
only the states of the components in the two dimensional mesh. The end connection nodes
(processors and memories) are not represented because we are not interested in tracking
their individual states. In some other situations, we may be interested in distinguishing
between a row with all BIUs failed vs a row with the corresponding row control element
failed. In that case, the state space would be larger (but still not as large as obtained by
a naive technique). Each state with one or more rows or columns of D has more than
one version, specifying whether the corresponding row/column control points (processors or
memories) or their combinations are operational or failed without distinguishing between if
there are more than one processor or memories that could have failed. It is easy to see that
the number of states is still small (it is exactly 84) which is much lower than 215.

7

4 Exploiting Multi-Dimensional Symmetry

The example of the previous section shows how a 15 component system can be represented
using exactly 36 states. The �ne behavior at the time of individual failures and their handling
can be exactly modeled with each arc in the Markov chain as each arc represents a failure of
a processor or a memory or a BIU. For example, the fault and error handling model as used
in the HARP tool [16] can be included without any di�culty. In this section, we develop our
methodology to generate state space, exploring permutation symmetry in a k-dimensional
structure.

Various researchers have dealt with this in di�erent ways. Arlat and Laprie [10] consider
state equivalences assuming only a small number of faults in multistage interconnection
networks. Such networks with or without multiple paths are also modeled in [11, 14, 3]
in speci�c manner but symmetry properties are not fully explored. Their techniques are
not easy to generalize. Das and Bhuyan have developed combinatorial techniques to model
multiprocessor systems, but they do not address the explicit state space generation issue.
Chiola et al. [4] use a technique similar to the one proposed here exploiting permutational
symmetry to model behavior of di�erent queues in a multiprocessor system using petri nets.
Their modeling is equivalent to a single dimension symmetry in our case. However, we are
considering multi-dimensional systems in which one component a�ect the structure (and
therefore behavior) in multiple dimensions.

Aupperle and Meyer [2] developed a method to exploit group symmetric properties to
reduce the state-space size. Again, our goal is the same as the one in [2] but our approach
is di�erent. Both approaches assume that the nodes in the system belong to a symmetric
group. They use a group theory method. Using a set of generators for the given system's
symmetry group, they generated a branching using the algorithm and state representation
from [13]. The time complexity is roughly of an order O(n5) algorithm and needs O(n3)
space (n = the number of states). The generators need to be identi�ed. The branching is
used to compute the order of the symmetry group. Then for each value of number of faults
present, a state space representative of those many faults is searched. This step in general
is exponential but in speci�c cases is shown to be O(n8). This state space is then used to
generate necessary transitions to complete the model of the system. That means the set of
next states for each state is determined and appropriate transitions rates are assigned. This
step also involve searches over the generated state space.

In [2], all the states are generated without regard to how they are going to be used.
Additional work is performed to add transitions to the state space. In contrast the above
scheme, we generate states one at a time and consider only those states which belong to the
minimized state space. Our initial state contains no fault. The next set of states contain
exactly one fault and this set is reduced to equivalent classes. Each of these states is then
expanded by introducing one more fault as demonstrated in Figure 6. Thus the expansion
is slow and can be truncated any time. In our procedure, transition rates are computed at
the same time and thus no more search is required afterwards.

4.1 State Space and Markov Chain Generation

We assume that the nodes in the system are connected in a k-dimensional structure. Each
vertex represents a node in the system. We also assume that by permuting the indices in

8

any particular dimension and renumbering the nodes and links, the structural behavior of
the system is not a�ected. The system performs in the same fashion when it is in any one
of the two states if representation of one state could be derived by permuting indices in the
respective dimensions of the representation of the other state. All such states can be lumped
together and represented by a single state in the Markov chain. This state is de�ned as the
basic class state for that set of states. For a given system state, by using the permutation
symmetry, we can �nd the corresponding basic class state, which is equivalent to the given
state. Our goal is to keep and track only the basic class states and eliminate all the other
states in the state space.

To de�ne an equivalent class of states and the corresponding basic class states, we use the
following de�nitions. We denote the dimensions as d1, d2, � � �, dk. The indices in dimension
di vary from 1 to ndi. Each node can be in an operational state (0) or a failed state (1).
Thus the state of a node can be represented by a single bit. It is possible to generalize our
technique to multiple-state components. The sorting and searching are on di�erent keys like
in [4]. This is more complicated but still manageable. However, the rewards will be worth
the e�ort. We use the following state representation.

De�nition: A state is represented by a state tuple consisting of a nd1 � nd2 � � � � � ndk
matrix where each element represents the state of a node.

De�nition: A permutation (p1p2; � � �pN), where each pi is unique and 1 � pi � N , of set
(1 2 � � � N) implies that 1 goes to position p1, 2 goes to position p2 and so on.

De�nition: The \corners" of a k-dimensional space are the extreme points or vertices of
the space.

De�nition: A basic class state SBCi corresponding to a given state si is obtained by
permuting the indices in each dimension to obtain a total order on them based on a prede�ned
criterion.

Thus, state SBCi is isomorphic to state si under permutation symmetry in each dimen-
sion. The criterion we use to obtain the total order on indices is that all ones are moved
towards a corner of choice. Without loss of generality, we arbitrarily choose the corner of
choice as point (1; 1; � � �1). The nearness to a corner may be de�ned using various criterion.
The criteria we use is based on counting ones (number of failures) in hyperplanes de�ned
by indices of a dimension and sorting them in descending order. In case of an equal number
of ones, we use a set of rules to break the tie and if none succeeds then we break the tie
arbitrarily. The rules are de�ned in the next subsection.

Let the permutation of indices in dimension di be denoted by P di. Our goal is to �nd a set
of permutations P d1, P d2, � � �, P dk , such that P dk � � �P d2P d1(si) = SBCi. The permutations
are applied on si one at a time. To �nd the permutation P d1, P d2, � � �, P dk we proceed in
a systematic manner.

Note that we are assuming that we have freedom in permuting indices in each dimension
and not the dimensions themselves. However, in some structures like the binary cube, even
dimensions themselves can also be permuted. In some other systems, only rotational and
not permutation symmetry within a dimension may be permissible. Thus the number of
permutations allowed are restricted to those obtainable by a rotation only. In such cases,
the algorithm needs to be, and can be, modi�ed suitably. It should be noted that in such
cases, the reduction in the state space size may remain small.

In the approach below, we start with one state at a time, generate all the next possible
states to that state and reduce the generated states to the basic classes using the permutation

9

symmetry. We continue the procedure until no more states are added in the generated set.
This procedure is similar to the one used in [1, 15]. The state space generation process
proceeds in a systematic manner such that the newly added states have one more fault than
its predecessor state. This allows the truncation of the state space by terminating addition
of states once the state representation satis�es certain speci�c criteria such as the number
of faults exceeding a certain given value. Also, note that the state space is symmetrical for
f and n � f faults where n is the total number of components. The state space generation
process is outlined below. In the following, ti and ri represent a failure and repair rate or
a forward and reverse transition rate in general. Moreover, the set Ts contain all possible
transitions, each caused by failure of a single node only.

Procedure GenerateSS&MC

begin

1. S s0 ; s0 is initial state

2. While S contains an unmarked state do f

(a) Select the next unmarked state s and mark it

(b) Find Transition Set Ts = f(si; ti; ri)g ;si is a next state of s with transition rate
ti and ri is the transition rate from si to s

(c) For each transition tri = (si; ti) 2 Ts,

i. Reduce state si to basic class SBCi

ii. If SBCi 62 S then S = S [fSBCig

iii. Add transition from s to SBCi with rate ti

iv. Add 1 the transition from SBCi to s with rate ri
/* If a transition already exists then the rates are added together */

gend while

end Procedure GenerateSS&MC

In the process above, a state s considered in Step 2a is a basic class state and injection
of a fault a�ects the structure of the state in a speci�c manner and at a speci�c location.
This information can be used to speed up the reduction process in step 2c(i). However, the
algorithm in Section 4.2 does not assume that the given state has any structure. Thus it
is a general solution for a k-dimensional structure. Also, in Steps 2c(iii) and 2c(iv), there
may be more than one transition added from a state s to SBCi or vice versa. All these
transitions are lumped together to one transition with the transition rate equal to the sum
of all the rates.

1Care should be taken when implied failures are present but state of all system components are not explicitly

included in the state representation. For example, in Meshkin suppose a BIU fails and then the corresponding

column processor or row memory fails. The second failure will dominate in the state space representation as all

BIUs in a column or row are marked failed. In such situations state space representation must include all repairable

components. Note that we can still take advantage of the permutation symmetry. For example, in Meshkin it will

be a 4� 4 system but symmetry is de�ned for three rows and three columns only.

10

Number of States. The actual number of states we need to consider is about jSjm
where jSj is the number of states in the �nal set and m is the average number of nodes
whose failure is considered in each state. Moreover, since si has one more fault than s, the
search for SBCi 2 S can be restricted in the relevant range of S.

We start with an initial state s0 where all the components are operational. This state is
also a SBC. State s0 is considered for failure of individual components, (as shown in Figure
6). All these transitions belong to set Ts. Thus, Ts for s = s0 consists of N states where N
is the total number of components in the systems. These will be reduced to SBC with one
failure. We denote the number of SBC states with i failures by Ki. Obviously, K0 = 1. For
the Meshkin example, Ts for s = s0 is 15 as there are 15 components that can fail. After
reducing these states, we are left with K1 states with one component failure. Note here that
due to implied failure, a single component failure may be viewed as multiple node failures
in the representation. In the next step, these states are considered for further failures and
so on. The total number of states is

Pi=N
i=0 Ki. However, the total number of states that

need to be reduced to SBC is considerably larger and is given by

i=NX

i=0

Ki � (N � i):

This is because each state with i failed components will have N � i operational components
whose failures need to be considered. This gives rise to N � i next states.

Pitfall. Our heuristic algorithm does �nd an appropriate set of permutations in most
cases. However, it is possible that states s1 and s2 are equivalent to the same basic class
state, but our algorithm does not detect that in some very speci�c situations. We will
demonstrate such speci�c situations in one of the example later on. However, the point to
note here is that even if we do not succeed in all cases, we still achieve a signi�cant reduction
in the size of the state space. Moreover, the two representations of the same SBC state,
when considered to include successive states, may produce the same next states (SBCs).
Also notice that it has no implication on the accuracy of the solution and the two states will
have state occupation probabilities such that their sum will correspond to the single state
occupation probability. Since rewards are identical for the two representations, the total
reward will also be computed correctly.

4.2 Algorithm for Reduction to a Base Class

AlgorithmGBCP(s(d1; d2; � � � ; dk); k) reduces a k-dimensional state into a basic class state
representation. We �rst de�ne a subcube of a cube as follows.

De�nition: A subcube of a cube is a sub-structure where a set of indices in each dimension
vary only in a sub-interval.

For example, a subcube denoted by SC(d1 = �; � � � ; di = (�::�); � � � ; dk = �) is a subcube
where dj, j 6= i varies between 1 and ndj and di varies between � and �. This is a smaller
structure derived from the given structure. The number of ones in a subcube SC is denoted
by N(SC). In the notation, if di = � we drop it in writing. Also, if � = �, then we only
write it once. Thus, SC(di = �ij) represents a subcube where di = �ij and the indices in
other dimensions can assume any value in their full range.

11

ALGORITHM: GET BASIC CLASS PERMUTATION GBCP(s(d1; d2; � � � ; dk); k)

begin

1. Obtain Partial order and partition sets PTdi in each dimension using the following steps.

(a) Obtain count N(SC(di = �ij)) for i = 1 to k and �ij = 1 to ndi.

(b) Permute indices and obtain partial order in dimension di by sorting N(SC(di = �ij))
for j = 1 to ndi.

(c) Using sorting, partition in each dimension di to obtain PTdi.

2. If k = 1 then go to Step 5.

3. Let lmax = k + k%2. lmax is an even number � k.

4. For l = 1; 3; � � � ; lmax Do
If l < k

Then call Partition-two(m(ndl; nd(l+1)), PTdl, PTd(l+1))
Else call Partition-two(m(nd(l�1; ndl), PTd(l�1), PTdl).

5. Return PTd1, � � �, PTdk.

end

Figure 7: Algorithm to obtain basic class permutation.

The algorithm consists of two steps. In the �rst step, we obtain a partial order on the
indices in each dimension separately. The algorithm �rst counts ones in subcubes de�ned by
di = �ij for i = 1; � � � ; k and �ij = 1; � � � ; ndi. Then it permutes (renumbers) indices in each
dimension di such that N(di = �ij) � N(di = �ik) for �ij � �ik by sorting the counts for
indices in each dimension di in descending order. This yields a partial order on the indices
in each dimension.

In the next step, we obtain a total order in each dimension to obtain a basic class state
representation for the given state. For k = 1, no further basis exists to obtain a complete
order. Therefore, the algorithm terminates. For k > 1, the algorithm continues to work
choosing two dimensions at a time. The dimensions are chosen in a speci�c order (the order
itself is chosen arbitrarily). Without loss of generality, we choose d1 as the �rst dimension,
d2 as the next, and so on. Thus, dimension dk is considered last.

The algorithm divides the indices in each dimension di for i = 1; � � � ; k to form subcubes
such that subcubes for all indices in that dimension in a partition have the same number of
ones. The sizes of partitions will obviously vary. The partition in dimension di is denoted by
PTdi and is fpdi1; pdi2; � � � ; pdini

g such that for all values of di in subset pdij , N(SC(di =
�ij j�ij 2 pdij)) are the same. jPTdij denotes the number of elements in PTdi. For example,
after sorting in dimension di, if N(di = �ij) = 5; 5; 4; 3; 3; 3, respectively, for �ij = 1
to 6, then the indices in dimension di are partitioned to obtain PTdi = f(1; 2); (3); (4; 5; 6)g
with jPTdij = 3.

The algorithm in Figure 7 describes the pseudo code for the steps to get a basic class
permutation. It calls Algorithm Partition-two, described in Figure 8, several times to
partition two dimensions at a time.

12

Algorithm: Partition-two (m(nda; ndb), PTda, PTdb)

begin

1. IF (jPTdaj = 1) AND (jPTdbj = 1) AND ((nda > 1) OR (ndb > 1))

THEN Select (one of) the largest element mcd of m(nda; ndb) and

Use row c and column d to obtain partitions PTda = f(c) � � �g and PTdb =
f(d) � � �g).

2. i = 1; j = 1. /* Select the first element of each set */

3. WHILE (jPTdaj < nda OR jPTdbj < ndb) DO f

Select ith element of PTda, pdai, and jth element of PTdb, pdbi

IF (jpdaij = 1) /* Single element forces a partition */

THEN f

k = j;

WHILE (k 6> jPTdbj) DO f

IF (jpdbkj > 1)

THEN f

carray(jpdbkj) = m(i; jpdbkj); /* Count in subcube */

PTc = GBCP(carray(jpdbkj); 1); /* Partition the subset */

Replace pdbk by PTc in PTdb;

k = k + jPTcj � 1; g /* end THEN */

ELSE k = k + 1; g /* end WHILE */

i = i+ 1; g /* end THEN */

ELSE IF (jpdbj j = 1) THEN /* Single element forces a partition */

k = i;

WHILE (k 6> jPTdaj) DO f

IF (jpdakj > 1)

THEN f

carray(jpdakj) = m(jpdakj; j); /* Count in subcube */

PTc = GBCP(carray(jpdakj); 1); /* Partition the subset */

Replace pdak by PTc in PTda;

k = k + jPTcj � 1; g /* end THEN */

ELSE k = k + 1; g /* end WHILE */

j = j + 1; g /* end THEN */

ELSE f

carray(jpdaij; jpdbj) = m(jpdaij; jpdbjj); /* Else partition two-dimension

subcube */

PTc; PTd = GBCP (carray(jpdaij; jpdbjj); 2);

Replace pdai by PTc in PTda and pdbj by PTd in PTdb; g

g

end

Figure 8: Algorithm to �nd total order in two dimensions.

13

The goal of the Algorithm Partition-two is to obtain a total order in the chosen two
dimensions da and db by permuting and partitioning each element in partition set PTda
and PTdb so that each element consists of only one index value. At the end of this step,
jPTdaj = nda and jPTdbj = ndb. We start with dimensions d1 and d2. For this step,
we de�ne a two dimensional matrix m(nda; ndb) where each element (�; �) is the count
N(SC(da = �; db = �)). The algorithm Partition-two takes the matrix m(nda; ndb) and
partition sets PTda and PTdb as inputs.

Algorithm Partition-two �nds sub-partitions in dimensions da and db by considering
one element from each of the partitioned sets of the two dimensions starting with the �rst
element from each set. It uses them to induce further order in the dimensions until no further
progress can be made. Then the algorithm moves to next element in the appropriate set.
Each time an element pda� is further partitioned in pda�1, pda�2, � � �, pda�c, it is replaced
by the sub-partitions while maintaining the sequence in PTda, the elements of the set PTda
are renumbered and the count jPTdaj is updated appropriately by c � 1. The algorithm
returns PTda and PTdb with total order.

If the whole set in both dimension consists of only one element whose values are greater
than one, then the algorithm forces a partition in each dimension by selecting the largest
element in matrix m and using the indices of that element as the �rst index for partition in
each dimension. In case of a tie, it arbitrarily picks up one of the elements. This is the �rst
step in the description.

If any of the �rst elements in both dimensions have only one index, that index is used
to induce a further partition in the other dimension. Algorithm GBCP() is used to create
the partition in that dimension. If any partition is induced, that is included in partition
sets PTda or PTdb, respectively, and the algorithm is repeated. If the �rst elements in both
sets consist of more than one index, then again algorithm GBCP() is called to induce
a partition in a smaller structure de�ned by the two sub-partitioned only. This smaller
structure consists of parts of the rows and columns which have the same sums in all rows
and in all columns. This 2-dimensional space is further partitioned using the two dimensional
subspaces as shown in Figure 9. In the �rst step, dimension d1 and d2 has four and three
partitions, respectively. In the next step, we choose the �rst partition of each partition set
and recurse through the process. The algorithm terminates when both dimensions achieve
the required partitions.

4.3 Examples

To demonstrate the above algorithm, we use several examples. In our �rst example, a state
in a three dimensional structure is shown in Figure 10. Using the �rst step of counting
in Figure 10 counts in dimension are (7, 5, 7, 5) for d3 = 1; 2; 3; and 4, respectively.
Similarly, the counts in dimension d2 are (5, 8, 8, 3) and in dimension d1 are (4, 8, 8, 4)
for respective indices. Thus example state in row of 1 Figure 10 is permuted in dimension
d3 using permutation (1 3 2 4). Similarly the state is permuted in dimension d2 using
permutation (3 2 1 4) and in dimension d1 using permutation (3 2 1 4). The resultant state
is shown in row 2 of Figure 10 in dimensions d1 and d2 only with elements as count of number
of ones in dimension d3. This creates PTd1 = f(1; 2); (3; 4)g, PTd2 = f(1; 2); (3); (4)g and
PTd3 = f(1; 2); (3; 4)g. After that, we start with dimensions d1 and d2 and call algorithm
Partition-two. That algorithm starts with a 2 � 2 substructure and permute dimensions

14

r1

c1

r11

c13c12c11

r12

c1 c3c2

r4

r3

r2

r1

1 0

0

1 1

1

10

1

0

0 0

1

1

1

1

0

0

1

1

0

0

0

1

0 1

0

0 1

r’

c’

Figure 9: Partition and arrangement of two dimensional space

d1 and d2 as (2 1) and (2 1) using the algorithm GBCP() and also partitions the indices
in each dimension. Next, it considers partitions with d1 = (34) and d2 = (1) and further
partitions sub-partition (3; 4) into (3) and (4) in dimension d1. At this point, the partitions
in d3 and d2 is complete. Then the algorithm works with dimensions d2 and d3. d2 is already
partitioned and dimension d3 consists of two partitions (1; 2) and (3; 4) (after renumbering).
Dimension d2 is used to impose a partition on partitions of d3. The �rst element in PTd2
induces an order in sub-partitions in PTd3. The resultant partitions are shown in the last
row of Figure 10.

In our second example, we have counts in all subcubes in each dimension as 8 (as shown
in Figure 11). In this case no obvious partitioning is possible. In dimension d1-d2, we force a
partition by picking up the largest element. We have two choices and we pick one arbitrarily
at location (2, 3). Then we sort the elements in row 2 and column 3. That induces a
partition and we get a complete order in dimension d1 and d2. Notice that choosing an
alternate value yields a state that is symmetrical with respect to the chosen one along a
diagonal (that is why, sometimes, we may not reach the same state.) Using this partition,
we still cannot induce any more partitions and force an arbitrary partition in dimension d3.

A more complex four dimension example is shown in Figure 12. In this example nd1 = 2,
nnd2 = 2, nnd3 = 4, and nnd4 = 4. For each value of d3 and d4, d1 and d2 is a 2� 2 matrix
as shown in the �gure. Working on 2 dimensions at a time, we get a partition as shown in
the Figure 12 in a straightforward manner.

4.4 State Spaces Sizes for Systems with Permutation Sym-

metry

Now, we consider the sizes of the complete state spaces for larger systems. We choose 2-
dimensional crossbar and hypercube (binary cube) systems. For a 3 � 3 crossbar, Table 1
lists all possible states one can generate. There are a total of 36 states which are same as

15

d1=1

d1=2

d1=3

d1=4

d2= 1 2 3 4

1 1

1 1 1

11 1

1

1 1

1 1

1 1 1

1

11

1 1

1

1 1

0 0

0

00

00

0 0

000

0

0

0000

0

0

0

0

0

0

00

00

0

0

00

0

00

00

0 0

0

d3=4d3=3d3=2

PT
d2

= {(1 2) (3) (4)}

PTd3
= {(1 2) (3 4)}

PT
d1

{(1 2) (3 4)}=5 8 8 3 :d2

4 8 8 4 :d1

7 5 7 5 :d3

1 2 3 4 : dim
Count

8 8 5 3

8

8

4

4 1

01

1 1 1

1

2 2 2 2

3 4

2 1

0

Select d1: (1 2)
Select d2: (1 2)

d1-Perm(1 2)
d2-Perm(2 1)

P d1: (1) (2)
P d2: (1) (2)

8 8 5 3

8

8

4

4 1

01

1 1 1

1

2 2 2

4

2

3

1 2

0

8 8 5 3

8

8

4

4 1

01

1 1 1

1

2 2 2

4

2

3

1 2

0

Select d1: (3 4)
d2: (1), NP

8 8 5 3

8

8

4

4 1

01

1 1 1

1

2 2 2

4

2

3

1 2

0

Select d1: (3 4)
d2: (2) Part (3) (4)

Permute d3 (1 3 2 4)

Permute d2 (3 2 1 4)

Permute d1 (3 2 1 4)

1 2 3 4d3=

d2=1

d2=3

d2=4

d2=2

3

1

2

1

2 2 1

2

1

1

3 2

2 0

0 1

3

1

2

1

2 2 1

2

1

1

3 2

2 0

0 1

3

1

2

1

2 2 1

2

1

1

3 2

2 0

0 1

3

1

2

1

2 2 1

2

1

1

3 2

2 0

0 1

Select d3: (1,2)
Select d2: (1)
Part d3: (1) (2)

Select d3: (3 4)
Select d2: (1)
Part d3: (3) (4)

Count in d2-d3 Final parts

Figure 10: Example 1: A state and its transformation in a 4� 4� 4 system

d1-d2 plane
Select element (2,3)
Sort Row 2 and Col 3

d1-Perm(2 1 3 4)
d2-Perm(4 2 1 3)

PT
d1

= (1) (2 3) (4)

PTd2
= (1) (2 3) (4)

4 2 2 0

2 3 0 3

2 2 3 1

0 1 3 4

|
v
8

|
v
8

|
v
8

|
v
8

3 3 2 0

4 1

0 2 4 2

1 2 2 3

 0 3

 ->8

 ->8

 ->8

 ->8

4 2 2 0

0 3 1 4

2 2 3 1

2 3 0 3

2 2 2 2 -> 8

2 2 2 2 -> 8

2 2 2 2 -> 8

2 2 2 2 -> 8

| | | |

v v v v

8 8 8 8

1010

0110

1001

0101

0110

0011

1100

1001

1100

0110

0011

1001

1100

0011

0011

1100

d1=2

d1=3

d1=4

d1=1 Count d1: 8 8 8 8

Count d2: 8 8 8 8

Count d3: 8 8 8 8

d2=1 2 3 4
d3=2 d3=3 d3=4

PT = (1) (2) (3) (4)
d2

PT =
d3 (1 2 3 4)

Count in d2-d3
All counts are the same
No further partition possible

Force partition

After a few sreps

Obtain a full partition

Figure 11: Example 2: A partition with equal counts in all dimension. It needs an element
selection for further arrangement.

16

1 0 1 1 0 1 1 1

1 0 0 0 1 0 1 1

1 0 0 1 0 0 1 1

0 0 1 1 1 1 0 1

0 0 1 1 1 1 0 0

0 0 0 1 0 1 0 0

1 0 1 0 0 0 1 1

0 0 0 0 1 1 0 0
d3=1 d3=2d3=3 d3=4

d4=1

d4=2

d4=3

d4=4

d2= 1 2

d1=1

d1=2

d3

d4
66910

9

9

9

4

4 3 2 0

2 3 1 3

2 2 2 3

2 1 1 0

Partition d3: (2 3) -> (2) (3)
Use d3:(2 3) and d4: (2)

d3

d4
66910

9

9

2 3 3 1

2 2 3 2

4 3 0 2

2 1 0 1

9

4

Partition d3: (1) (2 3)
Apply d3:(1) across d4:(3 4)

Permute d3: (2 3 1)

Partition d4: (3 4) -> (3) (4)

Part d1: (1) (2)
Part d2: (1) (2)

d1-Perm(1 2)

d2-Perm(1 2)

2 3 3 1

2 2 3 2

4 3 0 2

2 1 0 1

66910

4

9

9

9

d3

d4

Count in d3-d4

Use d4:(1), d3:(1 2 3)
Partition d3 (1 2 3) (4)
Partition d4:(1)(2)(3 4)
d3-Perm(4 1 2 3)
d4-Perm(1 2 3 4)

10 8

 6 7

1516

18

13

d2

d1

Count in d1-d2

State in 4-D

Figure 12: Example 3: A state transformation in 4-dimensions.

shown in Figure 4. For a 4� 4 crossbar, we list all possible states in tables 2 to 7 for various
node failures in the system. There are exactly 380 states in the system. If we compare them
with actual number of possible states, this is a signi�cant reduction. We could possibly have
up to 216 states. Thus we achieve a 99.5% reduction in the number of states. We also list
the actual arrangements of these states in Tables 8 to 11. Notice that we are not permuting
dimensions themselves but within each dimension only.

The other system we consider is 3-dimensional 2 � 2 � 2 crossbar structures with per-
mutation symmetry. It can have up to 28 = 256 states that can be reduced to 46 states.
The representative states are listed in Table 12. Notice that if it was a 3-binary cube then
we also have symmetry in dimensions as well. Then the number of states can be further
reduced to 22. For example, two faults states (02;11;02), (11;02;02), and (02;02;11) in the
set of 46 states are equivalent under dimensional symmetry. Thus, they can be represented
by only one state. Since there are exactly two choices in each dimension, it is relatively
simpler to identify equivalent states. Majorization techniques [6] can be used to permute
within dimensions after using the technique of the previous section with each dimension.

5 Conclusions

We have presented a techniqueto reduce the size of the state space associated with analysis of
a large class of systems which are designed using a regular interconnected topology. We have
also presented an algorithm to generate the states as well the Markov chain. In such systems,
the relative position of a node is of no importance. We exploit permutation and rotation
symmetries present in the system to our advantage in state space generation. Analysis of
such systems, combinatorially or otherwise, may result in large number of system states.
We demonstrated the reduction in largeness of the state space using several examples. We
also presented an algorithm to identify equivalent states. The resulting much smaller state
space allows analysis of very large systems. We believe that our technique is going to be

17

Table 1: Arrangements in 3� 3 Crossbar with Permutation Symmetry

S.N. No. of Failures Row Conf Col Conf Combinations
01 0 or 9 (0, 0, 0) (0, 0, 0) 1
02 1 or 8 (0, 0, 1) (0, 0, 1) 1
03 2 or 7 (0, 0, 2) (0, 1, 1) 1
04 2 or 7 (0, 1, 1) (0, 0, 2) 1
05 2 or 7 (0, 1, 1) (0, 1, 1) 1
06 3 or 6 (0, 0, 3) (1, 1, 1) 1
07 3 or 6 (0, 1, 2) (0, 1, 2) 1
08 3 or 6 (0, 1, 2) (1, 1, 1) 1
09 3 or 6 (1, 1, 1) (0, 0, 3) 1
10 3 or 6 (1, 1, 1) (0, 1, 2) 1
11 3 or 6 (1, 1, 1) (1, 1, 1) 1
12 4 or 5 (0, 1, 3) (1, 1, 2) 1
13 4 or 5 (0, 2, 2) (0, 2, 2) 1
14 4 or 5 (0, 2, 2) (1, 1, 2) 1
15 4 or 5 (1, 1, 2) (0, 1, 3) 1
16 4 or 5 (1, 1, 2) (0, 2, 2) 1
17 4 or 5 (1, 1, 2) (1, 1, 2) 2

Table 2: Arrangements in 4� 4 Crossbar with Permutation Symmetry(0 to 3 failures)

S.N. No. of Failures Row Conf Col Conf Combinations
01 0 or 16 (0, 0, 0, 0) (0, 0, 0, 0) 1
02 1 or 15 (0, 0, 0, 1) (0, 0, 0, 1) 1
03 2 or 14 (0, 0, 0, 2) (0, 0, 1, 1) 1
04 2 or 14 (0, 0, 1, 1) (0, 0, 0, 2) 1
05 2 or 14 (0, 0, 1, 1) (0, 0, 1, 1) 1
06 3 or 13 (0, 0, 0, 3) (0, 1, 1, 1) 1
07 3 or 13 (0, 0, 1, 2) (0, 0, 1, 2) 1
08 3 or 13 (0, 0, 1, 2) (0, 1, 1, 1) 1
09 3 or 13 (0, 1, 1, 1) (0, 0, 0, 3) 1
10 3 or 13 (0, 1, 1, 1) (0, 0, 1, 2) 1
11 3 or 13 (0, 1, 1, 1) (0, 1, 1, 1) 1

18

Table 3: Arrangements in 4� 4 Crossbar with Permutation Symmetry(4 failures)

S.N. No. of Failures Row Conf Col Conf Combinations
01 4 or 12 (0, 0, 0, 4) (1, 1, 1, 1) 1
02 4 or 12 (0, 0, 1, 3) (0, 1, 1, 2) 1
03 4 or 12 (0, 0, 1, 3) (1, 1, 1, 1) 1
04 4 or 12 (0, 0, 2, 2) (0, 0, 2, 2) 1
05 4 or 12 (0, 0, 2, 2) (0, 1, 1, 2) 1
06 4 or 12 (0, 0, 2, 2) (1, 1, 1, 1) 1
07 4 or 12 (0, 1, 1, 2) (0, 0, 1, 3) 1
08 4 or 12 (0, 1, 1, 2) (0, 0, 2, 2) 1
09 4 or 12 (0, 1, 1, 2) (0, 1, 1, 2) 2
11 4 or 12 (0, 1, 1, 2) (1, 1, 1, 1) 1
12 4 or 12 (1, 1, 1, 1) (0, 0, 0, 4) 1
13 4 or 12 (1, 1, 1, 1) (0, 0, 1, 3) 1
14 4 or 12 (1, 1, 1, 1) (0, 0, 2, 2) 1
15 4 or 12 (1, 1, 1, 1) (0, 1, 1, 2) 1
16 4 or 12 (1, 1, 1, 1) (1, 1, 1, 1) 1

Table 4: Arrangements in 4� 4 Crossbar with Permutation Symmetry(5 failures)

S.N. No. of Failures Row Conf Col Conf Combinations
01 5 or 11 (0, 0, 1, 4) (1, 1, 1, 2) 1
02 5 or 11 (0, 0, 2, 3) (0, 1, 2, 2) 1
03 5 or 11 (0, 0, 2, 3) (1, 1, 1, 2) 1
04 5 or 11 (0, 1, 1, 3) (0, 1, 1, 3) 1
05 5 or 11 (0, 1, 1, 3) (0, 1, 2, 2) 1
06 5 or 11 (0, 1, 1, 3) (1, 1, 1, 2) 2
07 5 or 11 (0, 1, 2, 2) (0, 0, 2, 3) 1
08 5 or 11 (0, 1, 2, 2) (0, 1, 2, 2) 2
09 5 or 11 (0, 1, 2, 2) (0, 1, 1, 3) 1
10 5 or 11 (0, 1, 2, 2) (1, 1, 1, 2) 2
11 5 or 11 (1, 1, 1, 2) (0, 0, 1, 4) 1
12 5 or 11 (1, 1, 1, 2) (0, 0, 2, 3) 1
13 5 or 11 (1, 1, 1, 2) (0, 1, 1, 3) 2
14 5 or 11 (1, 1, 1, 2) (0, 1, 2, 2) 2
15 5 or 11 (1, 1, 1, 2) (1, 1, 1, 2) 2

19

Table 5: Arrangements in 4� 4 Crossbar with Permutation Symmetry(6 failures)

S.N. No. of Failures Row Conf Col Conf Combinations
01 6 or 10 (0, 0, 2, 4) (1, 1, 2, 2) 1
02 6 or 10 (0, 1, 1, 4) (1, 1, 1, 3) 1
03 6 or 10 (0, 1, 1, 4) (1, 1, 2, 2) 1
04 6 or 10 (0, 0, 3, 3) (0, 2, 2, 2) 1
05 6 or 10 (0, 0, 3, 3) (1, 1, 2, 2) 1
06 6 or 10 (0, 1, 2, 3) (0, 1, 2, 3) 1
07 6 or 10 (0, 1, 2, 3) (0, 2, 2, 2) 1
08 6 or 10 (0, 1, 2, 3) (1, 1, 1, 3) 1
09 6 or 10 (0, 1, 2, 3) (1, 1, 2, 2) 3
10 6 or 10 (0, 2, 2, 2) (0, 0, 3, 3) 1
11 6 or 10 (0, 2, 2, 2) (0, 1, 2, 3) 1
12 6 or 10 (0, 2, 2, 2) (0, 2, 2, 2) 1
13 6 or 10 (0, 2, 2, 2) (1, 1, 1, 3) 1
14 6 or 10 (0, 2, 2, 2) (1, 1, 2, 2) 2
15 6 or 10 (1, 1, 1, 3) (0, 1, 1, 4) 1
16 6 or 10 (1, 1, 1, 3) (0, 1, 2, 3) 1
17 6 or 10 (1, 1, 1, 3) (0, 2, 2, 2) 1
18 6 or 10 (1, 1, 1, 3) (1, 1, 1, 3) 2
19 6 or 10 (1, 1, 1, 3) (1, 1, 2, 2) 2
20 6 or 10 (1, 1, 2, 2) (0, 0, 2, 4) 1
21 6 or 10 (1, 1, 2, 2) (0, 1, 1, 4) 1
22 6 or 10 (1, 1, 2, 2) (0, 0, 3, 3) 1
23 6 or 10 (1, 1, 2, 2) (0, 1, 2, 3) 3
24 6 or 10 (1, 1, 2, 2) (0, 2, 2, 2) 2
25 6 or 10 (1, 1, 2, 2) (1, 1, 1, 3) 2
26 6 or 10 (1, 1, 2, 2) (1, 1, 2, 2) 5

20

Table 6: Arrangements in 4� 4 Crossbar with Permutation Symmetry(7 failures)

S.N. No. of Failures Row Conf Col Conf Arrangments
01 7 or 09 (0, 0, 3, 4) (1, 2, 2, 2) 1
02 7 or 09 (0, 1, 2, 4) (1, 1, 2, 3) 1
03 7 or 09 (0, 1, 2, 4) (1, 2, 2, 2) 1
04 7 or 09 (0, 1, 1, 4) (1, 1, 1, 4) 1
05 7 or 09 (0, 1, 1, 4) (1, 1, 2, 3) 1
06 7 or 09 (0, 1, 1, 4) (0, 2, 2, 2) 1
07 7 or 09 (0, 1, 3, 3) (0, 2, 2, 3) 1
08 7 or 09 (0, 1, 3, 3) (1, 1, 2, 3) 1
09 7 or 09 (0, 1, 3, 3) (1, 2, 2, 2) 2
10 7 or 09 (0, 2, 2, 3) (0, 1, 3, 3) 1
11 7 or 09 (0, 2, 2, 3) (0, 2, 2, 3) 1
12 7 or 09 (0, 2, 2, 3) (1, 1, 2, 3) 2
13 7 or 09 (0, 2, 2, 3) (1, 2, 2, 2) 2
14 7 or 09 (1, 1, 2, 3) (0, 1, 2, 4) 1
15 7 or 09 (1, 1, 2, 3) (1, 1, 1, 4) 1
16 7 or 09 (1, 1, 2, 3) (0, 1, 3, 3) 1
17 7 or 09 (1, 1, 2, 3) (0, 2, 2, 3) 2
18 7 or 09 (1, 1, 2, 3) (1, 1, 2, 3) 5
19 7 or 09 (1, 1, 2, 3) (1, 2, 2, 2) 5
20 7 or 09 (1, 2, 2, 2) (0, 0, 3, 4) 1
21 7 or 09 (1, 2, 2, 2) (0, 1, 2, 4) 1
22 7 or 09 (1, 2, 2, 2) (1, 1, 1, 4) 1
23 7 or 09 (1, 2, 2, 2) (0, 1, 3, 3) 2
24 7 or 09 (1, 2, 2, 2) (0, 2, 2, 3) 2
25 7 or 09 (1, 2, 2, 2) (1, 1, 2, 3) 5
26 7 or 09 (1, 2, 2, 2) (1, 2, 2, 2) 3

21

Table 7: Arrangements in 4� 4 Crossbar with Permutation Symmetry(8 failures)

S.N. No. of Failures Row Conf Col Conf Arrangments
01 8 (0, 0, 4, 4) (2, 2, 2, 2) 1
02 8 (0, 1, 3, 4) (1, 2, 2, 3) 1
03 8 (0, 1, 3, 4) (2, 2, 2, 2) 1
04 8 (0, 2, 2, 4) (1, 1, 3, 3) 1
05 8 (0, 2, 2, 4) (1, 2, 2, 3) 1
06 8 (0, 2, 2, 4) (2, 2, 2, 2) 1
07 8 (1, 1, 2, 4) (1, 1, 2, 4) 1
08 8 (1, 1, 2, 4) (1, 1, 3, 3) 1
09 8 (1, 1, 2, 4) (1, 2, 2, 3) 2
10 8 (1, 1, 2, 4) (2, 2, 2, 2) 1
11 8 (0, 2, 2, 3) (0, 2, 2, 3) 1
12 8 (0, 2, 2, 3) (1, 1, 3, 3) 1
13 8 (0, 2, 2, 3) (1, 2, 2, 3) 2
14 8 (0, 2, 2, 3) (2, 2, 2, 2) 1
15 8 (1, 1, 3, 3) (0, 2, 2, 4) 1
16 8 (1, 1, 3, 3) (1, 1, 2, 4) 1
17 8 (1, 1, 3, 3) (0, 2, 3, 3) 1
18 8 (1, 1, 3, 3) (1, 1, 3, 3) 1
19 8 (1, 1, 3, 3) (1, 2, 2, 3) 3
20 8 (1, 1, 3, 3) (2, 2, 2, 2) 2
21 8 (1, 2, 2, 3) (0, 1, 3, 4) 1
22 8 (1, 2, 2, 3) (0, 2, 2, 4) 1
23 8 (1, 2, 2, 3) (1, 1, 2, 4) 2
24 8 (1, 2, 2, 3) (0, 2, 3, 3) 3
25 8 (1, 2, 2, 3) (1, 1, 3, 3) 3
26 8 (1, 2, 2, 3) (1, 2, 2, 3) 8
27 8 (1, 2, 2, 3) (2, 2, 2, 2) 2
28 8 (2, 2, 2, 2) (0, 0, 4, 4) 1
29 8 (2, 2, 2, 2) (0, 1, 3, 4) 1
30 8 (2, 2, 2, 2) (0, 2, 2, 4) 1
31 8 (2, 2, 2, 2) (1, 1, 2, 4) 1
32 8 (2, 2, 2, 2) (0, 2, 3, 3) 1
33 8 (2, 2, 2, 2) (1, 1, 3, 3) 2
34 8 (2, 2, 2, 2) (1, 2, 2, 3) 2
35 8 (2, 2, 2, 2) (2, 2, 2, 2) 3

22

Table 8: Actual Arrangements in 4� 4 Crossbar with Permutation Symmetry(8 failures)

Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col
0044 0134 0134 0224 0224 0224
2222 1223 2222 1133 1223 2222
1111 1111 1111 1111 1111 1111
1111 0111 0111 0011 0011 0011
0000 0001 1000 0011 0101 1100
0000 0000 0000 0000 0000 0000
1124 1124 1124 1124 1124
1124 1133 1223 1223 2222
1111 1111 1111 1111 1111
0011 0011 0011 0110 0011
0001 0001 0001 0001 0100
0001 0010 0100 0001 1000
0233 0233 0233 0233 0233 1133
0233 1133 1223 1223 2222 0224
0111 0111 0111 0111 0111 0111
0111 1011 0111 1011 1011 0111
0011 0011 1001 0101 1100 0001
0000 0000 0000 0000 0000 0001
1133 1133 1133 1133 1133 1133 1133 1133
1124 0233 1133 1223 1223 1223 2222 2222
0111 0111 0111 0111 0111 0111 0111 0111
1011 0111 1011 0111 1011 1110 0111 1011
0001 0001 0001 0001 0001 0001 1000 0100
0001 0010 0010 1000 0100 0001 1000 1000
1223 1223 1223 1223 1223 1223 1223 1223
0134 0224 1124 1124 0233 0233 0233 1133
0111 0111 0111 1101 0111 0111 0111 0111
0011 0011 0011 0011 0011 0011 0101 0011
0011 0101 1001 0011 0011 0011 0011 0011
0001 0001 0001 0001 1000 0100 0010 1000
1223 1223 1223 1223 1223 1223 1223 1223
1133 1133 1223 1223 1223 1223 1223 1223
0111 1101 0111 0111 1011 0111 0111 1011
0011 0011 0011 0011 0011 0011 1001 0101
1001 0011 0101 1001 0101 1100 0110 0101
0010 0010 1000 0100 0100 0001 0001 0010
1223 1223 1223 1223 2222 2222 2222 2222
1223 1223 2222 2222 0044 0134 0224 1124
1011 1110 0111 0111 0011 0011 0011 0011
0101 0011 1001 1001 0011 0011 0011 0011
0110 0101 0110 1010 0011 0011 0101 0101
0001 0001 1000 0100 0011 0101 0101 1001
2222 2222 2222 2222 2222 2222 2222 2222
0233 1133 1133 1223 1223 2222 2222 2222
0011 0011 0011 0011 0011 0011 0011 0011
0011 0011 0011 0011 0101 0011 1001 0101
0101 0011 0101 0101 1001 1100 0110 1010
0110 1100 1010 1100 0110 1100 1100 1100

23

Table 9: Actual Arrangements in 4� 4 Crossbar with Permutation Symmetry(7 failures)

Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col
0034 0124 0124 1114 1114 1114
1222 1123 1222 1114 1123 1222
1111 1111 1111 1111 1111 1111
0111 0011 0011 0001 0001 0001
0000 0001 0100 0001 0001 0010
0000 0000 0000 0001 0010 0100
0133 0133 0133 0133
0223 1123 1222 1222
0111 0111 0111 0111
0111 1011 0111 1011
0001 0001 1000 0100
0000 0000 0000 0000
0223 0223 0223 0223 0223 0223
0133 0223 1123 1123 1222 1222
0111 0111 0111 0111 0111 0111
0011 0011 0011 1001 0011 1001
0011 0101 1001 1001 1100 1010
0000 0000 0000 0000 0000 0000
1123 1123 1123 1123 1123 1123 1123 1123
0124 1114 0133 0223 0223 1123 1123 1123
0111 0111 0111 0111 0111 0111 0111 1101
0011 1001 0011 0011 0110 0011 1001 0011
0001 0001 0001 0001 0001 0001 0001 0001
0001 0001 0010 0100 0001 1000 0010 0010
1123 1123 1123 1123 1123 1123 1123
1123 1123 1222 1222 1222 1222 1222
0111 1110 0111 0111 0111 0111 0111
1010 0011 0011 0011 1001 1001 1001
0001 0001 0100 1000 0010 0010 1000
0001 0001 1000 1000 0100 1000 0010
1222 1222 1222 1222 1222 1222 1222
0034 0124 1114 0133 0133 0223 0223
0011 0011 0011 0011 0011 0011 0011
0011 0011 0101 0011 0011 0011 0101
0011 0101 1001 0011 0101 0101 0110
0001 0001 0001 0100 0010 0010 0001
1222 1222 1222 1222 1222 1222 1222 1222
1123 1123 1123 1123 1123 1222 1222 1222
0011 0011 0011 0011 0011 0011 0011 0011
0011 0011 0101 0101 0101 0011 0101 0101
0101 1100 1001 1001 1100 1100 0110 1100
1000 0001 0100 1000 0001 0100 1000 001024

Table 10: Actual Arrangements in 4 � 4 Crossbar with Permutation Symmetry(6 failures)

Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col
0024 0114 0114 0033 0033
1122 1113 1122 0222 1122
1111 1111 1111 0111 0111
0011 0001 0001 0111 1011
0000 0001 0010 0000 0000
0000 0000 0000 0000 0000
0123 0123 0123 0123 0123 0123
0123 0222 1113 1122 1122 1122
0111 0111 0111 0111 0111 1101
0011 0011 1001 0011 1001 0011
0001 0100 0001 1000 0010 0010
0000 0000 0000 0000 0000 0000
0222 0222 0222 0222 0222 0222
0033 0123 0222 1113 1122 1122
0011 0011 0011 0011 0011 0011
0011 0011 0101 0101 0011 0101
0011 0101 0110 1001 1100 1010
0000 0000 0000 0000 0000 0000
1113 1113 1113 1113 1113 1113 1113
0114 0123 0222 1113 1113 1122 1122
0111 0111 0111 0111 1110 0111 1101
0001 0001 0001 0001 0001 0001 0001
0001 0001 0010 0001 0001 0010 0010
0001 0010 0100 1000 0001 1000 0010
1122 1122 1122 1122 1122 1122 1122 1122
0024 0114 0033 0123 0123 0123 0222 0222
0011 0011 0011 0011 0011 0011 0011 0011
0011 0101 0011 0011 0101 0110 0011 0101
0001 0001 0001 0001 0001 0001 0100 0010
0001 0001 0010 0100 0010 0001 0100 0100
1122 1122 1122 1122 1122 1122 1122
1113 1113 1122 1122 1122 1122 1122
0011 0011 0011 0101 0011 0011 0101
0101 1100 0011 1010 1100 0101 1001
0001 0001 0100 0001 0001 0100 0010
1000 0001 1000 0010 0010 1000 0010

25

Table 11: Actual Arrangements in 4 � 4 Crossbar with Permutation Symmetry(< 6 failures)

Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col
0014 0023 0023 0113 0113 0113 0113
1112 0122 1112 0113 0122 1112 1112
1111 0111 0111 0111 0111 0111 1110
0001 0011 1001 0001 0001 0001 0001
0000 0000 0000 0001 0010 1000 0001
0000 0000 0000 0000 0000 0000 0000
0122 0122 0122 0122 0122 0122
0023 0122 0122 0113 1112 1112
0011 0011 0011 0011 0011 0011
0011 0011 0101 0101 0101 1100
0001 0100 0010 0001 1000 0001
0000 0000 0000 0000 0000 0000
1112 1112 1112 1112 1112 1112 1112 1112
0014 0023 0113 0113 0122 0122 1112 1112
0011 0011 0011 0110 0011 0101 0011 0110
0001 0001 0001 0001 0001 0001 0001 0001
0001 0001 0001 0001 0010 0010 0100 0001
0001 0010 0100 0001 0100 0010 1000 1000
0004 0013 0013 0022 0022 0022
1111 0112 1111 0022 0112 1111
1111 0111 0111 0011 0011 0011
0000 0001 1000 0011 0101 1100
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0112 0112 0112 0112 0112 1111 1111 1111
0013 0022 0112 0112 1111 0004 0013 0022
0011 0011 0011 0110 0011 0001 0001 0001
0001 0001 0001 0001 0100 0001 0001 0001
0001 0010 0100 0001 1000 0001 0001 0010
0000 0000 0000 0000 0000 0001 0010 0010
1111 1111 0003 0012 0012 0111 0111 0111
0112 1111 0111 0012 0111 0003 0012 0111
0001 0001 0111 0011 0011 0001 0001 0001
0101 0010 0000 0001 0100 0001 0001 0010
0010 0100 0000 0000 0000 0001 0010 0100
0100 1000 0000 0000 0000 0000 0000 0000
0002 0011 0011 0001 0000
0011 0002 0011 0001 0000
0011 0001 0001 0001 0000
0000 0001 0010 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 000026

Table 12: Actual Arrangements in 2� 2� 2 Crossbar with Permutation Symmetry

No. pn1/pn2 pn1/pn2 pn1/pn2 pn1/pn2 pn1/pn2 pn1/pn2 pn1/pn2
00;00;00 01;01;01 34;34;34 44;44;44

0/1 00 00 00 00 01 11 11 11
7/8 00 00 00 01 11 11 11 11

02;11;02 11;02;02 11;11;02 02;02;11 11;02;11 02;11;11 11;11;11
2 00 00 00 01 00 01 00 00 01 00 00 00 10 00

00 11 00 01 00 10 01 01 00 01 10 01 00 01
12;13;12 12;12;12 03;12;12 12;12;12 12;12;12 12;12;12 12;12;03

3 00 01 00 01 00 00 01 00 00 01 00 10 00 01
01 01 10 01 01 11 00 11 01 10 01 01 00 11

22;22;22 13;13;22 13;22;22 04;22;22 22;13;13 22;22;13 13;13;13
4 11 00 01 00 10 00 00 00 01 01 10 01 00 01

00 11 01 11 01 11 11 11 00 11 00 11 01 11
13;22;13 22;22;22 22;13;22 22;04;22 22;13;22 22;22;22 22;22;22

4 00 10 00 11 01 01 01 01 10 01 01 10 10 10
01 11 00 11 10 01 01 01 01 01 10 01 01 01

23;23;23 23;14;23 23;23;23 23;23;23 23;23;23 14;23;23 23;23;14
5 00 11 01 01 01 01 01 10 10 01 00 01 00 11

11 01 01 11 10 11 01 11 01 11 11 11 01 11
24;33;24 33;24;24 33;33;24 24;24;33 24;33;33 33;24;33 33;33;33

6 00 11 01 11 10 11 01 01 10 01 11 01 11 01
11 11 01 11 01 11 11 11 11 11 01 11 10 11

27

very useful in analyzing large systems exactly.

References

[1] A. Valmari, \Compositional State Space Generation," Advances in Petri Nets 1993.
Gjern, Denmark, June 1991, pp. 427-57.

[2] B. E. Aupperle and J. F. Meyer, \State space generation for degradable multiprocessor
Systems," in Proc. FTCS-1990, Montreal, June 1991, pp. 308-15.

[3] W. H. Sanders and J. F. Meyer, \Reduced Base`Model Construction Methods for
Stochastic Activity Networks," IEEE Trans. on Selected Areas in Comm., Vol. 9, 1991,
pp. 25-36.

[4] G. Chiola, C. Dutheillet, G. Franceschini, and S. Haddad, \Stochastic Well-Formed
Nets (SWNs) and Multiprocesor Modeling Applications," IEEE Trans. on Comp., Vol.
42, no. 11, Nov, 1993, pp. 1343-1360.

[5] K. Begain, G, Farkas, L. Jereb, and M. Telek, \Step-By-Step State Space Generation
For the Reliability of Complex Markovian Systems," in Proc. RELECTRONIC '88, 7th
Symp. on Rel. in Electronics, Budapest, Hungary, Vol. 1, Sept. 1988, pp. 314-322.

[6] G. Marshall and J. Olkin, \Inequalities: Theory of Majorization and its Applications,"
Academic Press, 1979.

[7] A. K. Somani and M. Bagha, \Meshkin: A Fault Tolerant Computer Architecture with
Distributed Fault Detection and Recon�guration," in Proc. of 4th Intl. Conf. on Fault
Tolerant Computing Systems held at Baden Baden, September 1989, pp. 197-208.

[8] A. Nordseick, \Issues in Chip-Level Redundancy Architectures," Workshop on Wafer-
Scale Integration Systems, 1990, pp. 137-141.

[9] A. K. Somani and T. Sarnaik, \Reliability Analysis Techniques for Complex Multiple
Fault Tolerant Computer Architectures," IEEE Trans. on Rel., Vol 39, No. 5, Dec.
1990, pp. 547-556.

[10] J. Arlat and J. C. Laprie, \Performance-Related Dependability Evaluation of Super-
computer Systems," in Proc. of FTCS-13, Milano, Italy, June 26-30, 1983, pp. 276-283.

[11] J. T. Blake and K. S. Trivedi, \Reliability Analysis of Interconnection Networks Using
Hierarchical Composition," IEEE Trans. on Rel., vol. 38, no. 1, April 1989, pp. 111-120.

[12] C. R. Das, J. T. Kreulen, M. J. Thazhuthaveetil, and L. N. Bhuyan, \Dependability
Modeling for Multiprocessors," IEEE Computer, vol. 23, no. 10, Oct. 1990, pp. 7-19.

[13] M. Jerrum, \A Compact Representation for Permutation Group," Journal of Algo-
rithms, vol. 7. no. 1, pp. 60-78, Mar. 1986.

[14] A. Varma and C. S. Raghavendra, \Reliability Analysis of Redundant-Path Intercon-
nection Networks," IEEE Trans. on Rel., vol. 38, no. 1, April 1989, pp. 130-137.

[15] G. Ciardo, J. Gluckman, and D. Nicol, \Distributed State Space Generation of Discrete-
State Stochastic Models," ICASE Report 95-75, 1995.

[16] J. B. Dugan, K. S. Trivedi, M. K. Smotherman, and R. Geist, \The Hybrid Automated
Reliability Predictor," Journal of Guidance, Control, and Dynamics, Vol. 9, no. 3, May
1986, pp. 319-331.

28

